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SUMMARY

The problem of the prediction of the exact pressure field produced
at close ranges by an impulsive sound source near a fluid-layered solid
interface is considered. A theory is developed that should accurately
provide arrival time data and exact pressure response waveform data for
a model consisting of an explosive acoustic source in a fluid overlying
a two-layered solid. Experimental pressure response curves have been
obtained with the use of models and are presented to support the theo-
retical development. Although the final results of the theory are not
at present in closed form, it is anticipated that such results should
be possible in the near future.

The method of Cagniard, which is a Laplace transform technique, is
utilized in the mathematical deve lopment. Although this type of deri-
vation becomes quite complicated, it is worthwhile because it enables
one to obtain expressions describing exact pressure response waveforms
that are in closed form; that is requiring no further integrations.

It was shown in a previous paper! that for low-frequency sound
transmission near the ocean floor, the bottom cannot be considered as
a liquid because of the possibility of surface waves occurring at the
bottom interface. These waves are attenuated in a direction normal to
the interface, and hence are not important at high frequencies or large
distances from the interface.

The experimental data presented was obtained in a model using
previously developed experimental techniques.l The sound source was a
coaxial spark gap and the hydrophone, or detector, was a small ultrasonic
probe. Model solids included plexiglas, plaster, flint glass, aluminum,
and lead.

It is concluded that the theoretical approach of Cagniard appears
to be quite applicable to problems of the type presented here. The
extended theory developed in this report is accurate in predicting most
expected arrivals at short ranges in the experimental model. It is
anticipated that further theoretical development will provide exact
waveform data. Except for rare situations, it is found that surface
‘'waves cannot exist at real solid-solid interfaces, Additional surface
waves appear to exist at the fluid-solid interface because of reflections
from lower solid-solid interfaces, The results obtained in this




investigation continue to illustrate the large errors in wave propagation
predictions near an interface that can occur when the ocean bottom is
considered to be a fluid. It is hoped that further work on problems of
this type will eventually permit the prediction of the exact pressure
field produced by an explosive source near a real ocean floor.




INTRODUCTION

A theory recently published by Strick® has been found to give
reasonable accuracy in prediction of the pressure fields at short ranges
from an impulsive sound source near a fluid-homogeneous solid interface,
However, the assumption of the homogenecus solid greatly restricts the
application of this theory. When considering low frequencies it is
difficult, if not impossible to find an ocean bottom that is homogeneous
down to a depth of at least ome wavelength, the point at which surface
wave effects can usually be neglected. If the mean frequency under con-
sideration is 15 cycles, a typical hard bottom (a = 7500 ft/sec) would
have to be homogeneous down to a depth of about 500 feet.

Hence, this repcrt is intended to extend the theory advanced by
Strick to a model consisting of a fluid overlying a two-layer solid,
Although the final result of the extended theory is not in closed form,
it is developed to a point that one can predict and identify the elastic
wave arrivals occurring in the pressure response curves obtained from
the experimental model.

Pekeris® presented the normal mode theory for explosive sound trans-
mission in three liquid layers in 1948, and this problem has been further
investigated by Officer* and Press and Ewing®. McLeroy® has published a
complex image theory for near-field, low frequency propagation in shallow
water overlying a many-layered bottom, but it is not valid for the problem
to be considered here,

MATHEMATICAL PRESSURE RESPONSE DERIVATION*
FOR THE TWO-LAYER BOTTOM MODEL

The geometry of the problem is presented in Figure 1., As in
Reference 1, the liquid is considered to be semi-infinite in extent,

*To the best of our knowledge this derivation has not been made elsewhere,
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FIGURE 1. THE ASSUMED MODEL

It will be seen that the derivation for this extended problem will
closely follow that given by Strick® in his original derivation for a
liquid-homogeneous solid model. A simplified version of this derivation,
along with a number cof added explanatory comments, can be found in
Reference (1). It will be assumed that the reader is familiar with at
least one of the aforementioned papers.

Figure 2 serves to identify the 11 displacement potentials that
will be considered in this problem. It will be assumed that any waves
existing after two reflections from the lower (solid-solid) interface
can be neglected. For many situations this is not a good assumption,
but it is not so unreasonable when one realizes that the predominant
waveform, the surface wave, dies out exponentially with distance normal
to the interface. The introduction of the middle layer into the problem
has made a rigorous solution of the problem by the potential technique
difficuilt, as there are now an infinite number of potentials that should
be considered. As in the homogeneous bottom problem, the pressure
response will be obtained for a delta-excited line source, instead of an
explosive point source.

¢§ is the displacement potential due to the line sound source in an

infinite fluid, ¢f represents the displacement potential due to energy
propagated back 1n%o the liquid because of the presence of the fluid-

solid interface, Likewise, wf is the displacement potential representing
energy propagated back into tﬁe fluid because of the presence of the
solid-solid interface, As shown in Appendix A of Reference 1, two
potentials are necessary to describe the wave propagation in an infinite

-10-
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FIGURE 2, THE 11 DISPLACEMENT POTENTIALS

s s
solid medium. Hence, potentials such as % and vll are necessary in

the solid.

Ths displacement potential in an infinite fluid due to a harmonic
line source is given by !

@™

v =iw(Tz + gx) iwt
f e U N e dge
9, (x,2z5e" ) QOJ = : €Y
-0
where
P 1
2
Q= —F7 T CG-a)
2ip"w c

and

q= % sin 0
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the angle 6 is defined as the angle between the vertical z-axis
and the wave vector associated with each elementary plane wavefront
assumed in obtaining Equation (1). The other potentials in the problem
are given by Equations (2a-j), where A(q) through N(q) represent re-
flection and transmission coefficients which will be evaluated shortly:

£
wl(x,Z;e

. & -i0[T (2H-2) + qx] , iwt
Lwt) - Qo J A(q)e - dge (2a)

1

® -1 2.2
8 , -iw((F7 - q7) z + qx], it
‘Pll(x,z;elwt) =Q, J Blale 4 dge (2b)
J T
© 1 ) %
1 iwt -10[ (7 T Yy z 4+ qx], iwc
¥ (z5e ) = Q) C(qe b dge (2¢)
- r
= %
sy ot -iu)[(——li - q?_) (2H + 2J - z) +qx] ot
¥, (x,z;e" ) =Q JD(q)e a dge (2d)
2 o T
%
s = -iwf (L2 - qz) (21 + 23 - 2) +qx] it
b, oz = g Lf E(gle b dae —  (2e)
r
%
® -iwf (—15 - qz) (27 + z) + qx] ot
s1( R L J‘ F(qle a dge 26)
Py (x,23e 0 T
¥
. ® -im[(—li - qz) (23 + z) + qx] ot
*31(x,z;e1wt) =Q, f Glade 2 T dge (2g
5
2
© -iw[(—% -q) z+gqx]
2 iwt, _ M(q)e g dqge 2h)
9, (x,z5e7 ) = Q) T (
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L
2
s = -im((—% - q2) z + qx]

2 iwt it
¥ (x,z;e""") = Q, J Lig)e « T dge (21)

-3

-iw[T(2H + 2J - z) + qx] ot
dgqe

(23)

. ,
apxz5ely = o [ Mlade -
-8

The boundary conditions are:
(1) The normal stresses are continuous at both interfaces.
(2) The normal displacements are continuous at both interfaces.

(3) The tangential stresses are zero at the liquid-solid interface
and continuous at the solid-solid interface.

(4) The tangential displacements are continuous at the solid-solid
interface.

These boundary conditions give 10 boundary equations which can be
used to evaluate the 10 unknowns, A, B, C, D, E, F, G, M, I, and N,
Actually, as we are only interested in the response in the fluid, it is
only necessary to determine A(q) and N(q). The details of the derivation
of these quantities are given in Appendix A. As expected, A(q), or A(u)
with a change of variables, is unchanged from the similar reflection
coefficient occurring in the original fluid - homogeneous solid derivation
and is given by

2
y(Kg - 2u2) + AuzayB - ﬁf— Kg o
Au) = > 1 , (3)
V2 - 208+ hulays + &K g
2 Sy 2
where
2 2 £
a = (K]. - u ) ’
2 2 e
g = (KZ -u)
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N

y=Qa-d) ,

K1 =c¢/a ,
K2 =c¢/b ,
u=-cq,.

¢ = compressional sound velocity in the fluid,

a = compressional sound velocity in the first solid,
and b = shear sound velocity in the first solid.
N(q) is considerably more complicated than A(q) and is given by
-iwJ(a’ + b’ - 2

. ’ . / -
e 2iwJ(a’ - I e-21wJ(b )

N +N +N_e
1 2 3
N(q) = = L= s (4)
W85 = 23€,)
where:
£ $1.2 2 e g 2)2
W=op"+4p bogpT + 2 a4 (5)
222 ¢ pf_
= - = - = - ’
N [(1 - 2b°¢7) pD( 14 4el)] [a + I'n) (6)
ps
1
= £ b 2 11 oo - = + r pf
N, = [16 p'Tb7q"a’d (5,84 e2H3)] [a oo + I'n] ¢
= -80fr2 - 22 ‘(= - = (= - = +
N, = [-8 Tb"q(1l - 2b°q")] [b (5,645 = €,85) + a'(Fy8, Naez)] :
[a’ & 4 ) (8
pS
1
s s2 s1
gl = {[Zp 1b2qa' - 2;79 (1 - 2k2q2)] + [Zkzq2 + 2;— (1 - 2b2q2)] .
2
s p
Sy 2 2 2 2
[-20 2’g’q + 554 1 - 2PqH) 1} )
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€, = {[p 1(1 - 2b2q2) - -9?9 (1 - 2k2q2)] + [-2k2qb’ + -2-9—8— bzb'q]-

S
8 2
(20 %k%g%q - =4 - 2%q%) ]}

s
S

83 = {['ZP K’
p

S
s 2
2.2 0 “q 2 2
(-2p "k'g'q + = (1-2kq)]}

1
5 204 =2t .2 2
e, = {lo T - 2P + 22 (1 - 2lAHT 4= biap’ + 2ap ']
2
p
'8 S2

2 2 2 2
(20 APg’q - &4 1 - 2dqD)}

juls
[}

2 51
- 2
{(—q—, - a'>+(g' +-‘L% [2k2q2 +2—(@a -2 qz)]}
1 k . k' 52
Y

s
’ 1 2
= ={(q"b‘;—g\+<g’+‘$[2k2qb/-‘Z'n'—bb'ql}
2 * k' k" 82

P

s
1
r 22 22
53:{(3’-&76+<g'+i®l_2-;— (1-2bq)+2kq]}
’ 2
P

I

S
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- (e B+ (o + D[ e - aden’])
b 1
p

-15-

p

2

(10)

s 1
22
12a0g - 5 2% (1 - 2k%q%) ] = - 262427 + 26%q%] -
)

(11)

(12)

(13)

(14)

(15)

(16)




+)]
>
i
7O\
o
N
] ]
a o
N \‘:zw

a
b* = (45
b
O
g 2 q
g
%
k=L gD (17)
ké.
g = compressional sound velocity in the lower solid
k = shear sound velocity in the lower solid
2
n= (1 - 2622 + 4bqZa’b’ (18)
The total displacement potential in the fluid is given by
£f_ f f f
Y ‘(Po"“Pl"’CPZ’
and the total fluid pressure response is
f f £ f
P =P, t Pt R
f f , .
¢° , and hence P, » is unchanged from the original homogeneous
solid problem. For an impulsive type sound source,
£ Poc H(t-—c)
po(x,z; delta) = (19)

%
sztz ;
ro\\ 2
r
o

where

L
&>+ 20,

T
[¢]

H

the unit step-function,

and Polis an undetermined constant depending on the strength of the sound

source, Likewise, since wi is unchanged, pf is unchanged, and is given by
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P c
f —
pl(x,z; delta) = ;2— (D) {Aégl] H(t - tp p p )
1 1°271

(20)

where

-1%

=42 2
r, = [x + (2H - 2) I

9%
o[-,

and
'15

X 2H - 2-

t =X, (2H - 2) [1 . £~]

17271 ¢ a2

The evaluation of this expression for three ranges of t and for b < ¢
(Case 1) or b > ¢ (Case 2) gives:
’ r

1
(a) Case 1: t £ts— , Case 2: t Srsr
PleP1 c PleP1 P182P1
PL
25Ky Pe 2 2.2 2 o % -
£ Aﬁ,l L Y(K2 - 2u7) (u - Kl) .
py(x,2; delta: = — - - 2_] ,
1 2,2 2 2, 2, . pt 4
Y (K2 - 2u’) - o (4u'By + K)
s1 2
P
where y
2
X SZH - 2) <
tpsp, b T . 1-7)
17271 b
£ a
(b) Case 1: pIEO, Case 2: ts 5 p <t < "
1721
of 4
2557 Ky Be 2 2. %
£ o ! YT - KD ()
pl(x,z; delta) = o > A ) < f\Z :
1 Yy f(u)” - o L) x
8 2
1
p
-17-




where

[N o

2 ¥,

2 2 2,2 2
f(uw) = (K2 - 2u7) - 4uT(u" - Kl) (u” - K2)
r T
(c) Case 1: ¢t =z ) Case 2: ¢t = Yy
£ 2 2
2 . 2 8 p
IV e - 5 Ep o el
£ P.c 0
pl(x,z; delta) = r1|6l |D|2 (21)

where

£
D) = yE(w) + (&) K o
P

It is now necessary to find pf (x,z; delta), the pressure response
2 p

in the fluid due to contributions from the solid-sol d boundary when
the sound source is impulsive. It was shown above that the integral

expression for pg is

(22)

-]
Lot P Jﬂ Ne-lw[r(ZH + 27 - 2) + qx]dqelwt '
r

) = —

p§(x,z;e

Or, using Equation (4)
s _ o)
P ® N1e1w[F(2H z) + 2Ja' + qx]dqeimt
) =71 TW(

iwt

£
py(x,z;e

[tl

Eae3 - 3‘4)

- - ' w
p © Nye iw[T(2H - 2z) + 2Jb' + qx]dqei t

[WE ¢ -=2¢)
- 4 3 34
- .- ] 1)
P ® Nye 1wl (28 - 2) + J(a' + b') + qx]dqeiwt
+ = -

21 FW(Eac3 - :3‘4)

Il
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iwt iwt iwt

f
= [py 0,25 €N + [p; (0,25 ™1, + [pE(x,2, ™9, (29

The expression for the s-multiplied Laplace transform of the pg

contribution to the total pressure response due to a step-function
excitation of the source can now be obtained by replacing iw by s and

iwt
dropping the e in Equation (23). This is a technique used in filter
analysis and brief explanations can be found elsewhere,l’2

Thus,

. o N e-s[F(ZH - z) + 2Ja' + qx]dq
- e P, 1

Py (Xs25e ) =73y f TWEeq - 25 06,)

- - [}
® Ne s[T(2H - z) + 2Jb' + qx]dq

+ =2 L
2i FW(Eae3 - 3334)
Po @ N3e-s[F(2H -z) +Ja'" +b") + qx]dq
t 2 TW(E, €, - 55¢,) (24)

-

The s-multiplied Laplace transform of a sum is the sum of the transforms
of the individual components, so it is possible to separate the problem
into:

f £ £ £
pg(X.Z;step) =[p,(x,z;step) ]| + [p,(x,z;step)], + [p,(x,z5step)]; ,

where - E[(ZH - z) v+ 2cJa' + ux]
® N.e c du

5 .
(P =31 W=, €. - =. &) ’
483 7 73 84

- f[(ZH - z) y+ 2c¢Jb' + ux]

-]
-—f --P-q NZe du ,
(Py)y =735 TWE, €, - 5p8,)
- .

3 374
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- f[(ZH -z) y+cla +b') + ux]

b, -2 [ 5 T
2’3 =721 | TW(E,E, - 556,
and
u=cq, = g .

To obtain the inverse s-multiplied Laplace transform it will be
necessary to have an expression of the form

@

?(x,z; step) = (Constant) Jﬂ [fn(u)]e-STdT N (26)
0

Then, using the derivative rule for s-multiplied Laplace transforms,

£(£'(6)) = s  £(£(t)) - s £C0) ,
and the fact that the delta-response is the derivative of the step-response,
it will be possible to obtain the delta-function excitation pressure response
in a closed form:

p(x,z; delta) = Constant [ fn(u)]

So, to reduce Equation (25) to three equations of the form of Equation (26)

it is necessary to define Tl, Tys and Tyt
(2H - z) 2, % Lowh %
- (1-u) +2C5 -5 +& (27a)
1 c a2 2 c
¥ . 2%
2H - 2 2 A _u ux
Ty = - (1 - u) + 2J¢( 5 2) + . (27b)
b c
5 2 2%
T ='(M(l-u2) +J[.i_.1_1_) +(._1._.U_)]+.ﬂ (27¢)
3 c b2 CZ 82 c2 c
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T.»> T, and T, each contain at least one term that is not present
in the transforma%ion to T. in the homogeneous bottom problem, The
transformation in that case is

%
Tl(Homogeneous bottom) = igg-§~£l (1 - u2) + %%

It was relatively easy to determine u as a function of T, in that case,
but for the current problem this becomes much more difficult. On the
other hand, it is still possible to obtain an expression for du as a
function of d'ri and u,

From Equations (27a), (27b) and (27c), after a substitution of previously
defined quantities, it is found that:

dr
_ 1
du = [-42}1 - 2u _ 2Ju_ 5] (28a)
ye a'ct " ¢
de
du = [112H - z)u _ 2Ju + X (28b)
ye b'c? " ¢
dT3
= 2
du “GE -~ 2o 1 L X (28c)
- 2 ( 1 + b!) +
Ye a c
C
Then,
-sT)
oEx.z5 step) _ 5 J Ne bar
AR 2i wil (:463 - :3C4)
"1
-8T 'ST3
Po N2e de Po N3e dT3
21 (=, 5.6, |21 W, (5,8, - E.6,) (29)
i YWy 15483 7 3 8 T3 T T T
2 3

where vi is defined by the denominators of Equations (28a), (28b) and (28c),
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The problem has been reduced to expressions of the form

[;E(x,z; step)] = (Constant) jj [fni(u)]e-STidTi

(o4
T,
1

(i=1, 2, 3)

But, since
—_— o
s[pg(x,z; step)J = P;(x,z; delta)

as was discussed previously,

- -sT,
[pg(x,z; delta)J = s(Constant) Jﬂ [fni(u)]e ld'ri
i

c
T,
i

(1=1,2,3) (30)

The right-hand side of this expression is in the form of an
s-multiplied Laplace transform, except for the fact that the limits on
the integral are not proper. Once the integral over the contour .

i

is changed to an integral over 7, = 0 to T, =% expression (30) will be

i
of suitable form to take the inverse Laplace transform, The problem will
then be in a closed form requiring no further integration, This transform
to a proper form of integral is complicated by the presence of a large
number of poles and branch points, and by the fact that u cannot be found
as an explicit function of 7,. Work is continuing at the present time on
this transformation. But, there is still a large amount of extremely
useful information in the present integral form of the delta response,

The closed form solution is desired to theoretically predict the exact
waveform of the various elastic waves, but this waveform can also be found
experimentally in a model. Thi experimental problem then reduces to
identifying the type of wave with the waveform. The present form of the
theory is sufficient to make this identification.
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DISCUSSION OF THEORETICAL RESULTS

In the fluid - homogeneous bottom problem Strick found that each
elastic wave could be predicted by the existence of poles and branch
points in his expression for the total pressure response. Thus, the
indicated procedure at this point is to search for similar singularities

in Equation (29), noting that in general pz and pi have already pre-

dicted the existence of P, S, direct, reflected, Rayleigh and Stoneley
waves due to the presence of the water-solid interface.!’2

Branch points are present in the denominator of Equation (29) at
c c c c .
u =+ 3’ + B * E’ and * E.* When these values for u are inserted into

the expressions for To it is found that:

% .
T (u=9) = ﬂ;—zl (1 - i;) +2= tP1P2P1 (31a)
c (2H ~ z) c2 : 1 1 : X
=y = o - 2T ZJ(? - ?) ty = “P|S,P,R P,S,P,
c (2H - z) c2 : 1 1 ; X o
Tl(u = E) = " (1 - ;E) + 2J(;§ - ;E) + E = tP1P2P3P2P1 (31c)
c (2H - 2) c2 : 1 : .S
Tl(u = ;) = s (1 - ;E) + ZJ(;I - ;E) T E tP1P253P2P1 (314d)

*In the transformation from u to i the y factor should drop out and

22 %
= ;Z) , representing a reflected wave from
r,
1 2
the liquid-~solid interface. See the original paper by Strick™ for an
elaboration on this point.

be replaced by & = (1 -
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=1

2 * 1 _ 1
c L1
-5 ruEG -

[N

X
a2 PP SR S.PP

a b a 17227 22525
L (31e)
2/2
[ X
£y + 25 ¢ (31f)
02 b PS,P,
1 1
c 1 1 X .
Sy +22(F - +S=¢ (31g)
gz : gz g P,S,P45,P,
) % %
[d 1 1 X
£y o+ 2= - Yy += =t (31h)
2 22 k P1S,5,5,P;
, % %
[ S I <
- FICG - 3 (314)
a b a
) % %
) +i5 -5 +E (31)
b a b
) % % %
. & 1 _ L i _ 1 ] X
D+ + - |42
g b g a 8
=t =t (31k)
P S,P,P P P P,P,S,P,
) % . 5 5
1 1.7
) +J{(—12--13> t - |+ X
k - b i a k
= (314)

t =t
| P1P253SZP1 PISZSBPZPI
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Appendix B contains geometrical derivations for the travel times
of the critically refracted and the reflected - critically refracted

arrivals that are to be expected in this problem. An analysis of these
travel time expressions will show that the geometrical travel times are
given by equations identical to those given by Equations (31), except
that no geometrical arrivals can be found to correspond to

Equations (31i) and (31j). Also, an analysis of the experimental re-
sults will show that no arrivals are present corresponding to those
described by (31i) or (31j). Note that when (31i) is not complex,
(31j) is complex, and when (31i) is complex, (31j) is not complex.
Hence, arrivals corresponding to (31i) and (31j) could never exist
simultaneously.

Poles exist in Equation (29) corresponding to the vanishing of
Vis Vos Vg, W, or (:4e3 - E, 4). Vi Yy and v, are given by the

denominators of Equations (28a, b, c) respectively, It is hypothesized
that when the value of u that corresponds to the vanishing of Vi is

substituted into the corresponding T equation, the T, equation will

i
give the travel time of an arrival that has been refracted at the fluid-
solid interface, reflected at the solid-solid interface, and again
refracted at the fluid-solid interface. Geometrically, the approach
necessary to determine a travel time for such a reflected wave consists
of using an iterative process to find a reflected travel path that
satisfies Smell's law for a given set of dimensional and elastic parame-
ters, It will be seen that the two methods give identical results, so
it is concluded that the mathematical approach hypothesized is valid,

From Equation (5),

s s 2
W=l + 4p1 b%q%'T + p M1 - 2b%¢%) f—,

S
1 2 f
- [Y(xg - 2dh) + dyu’as + - o] (32)
oK2 0 1

The term in brackets in Equation (32) is exactly the denominator in
Equation (3). In the liquid-homogeneous solid problem the vanishing of

the denominator of Equation (3) defined the phase velocity of the Stoneley
interface wave., Hence, Equation (32) simply predicts a Stoneley wave
traveling along the fluid-solid boundary. Using the data from Table 1

and the Stoneley wave charts’, it is found that for a water-plexiglas inter-
face, Equation (32) vanishes for a value of u corresponding to a Stoneley
velocity ¢f 1,03 x 10° centimeters per second.
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The expression (3433 - 3384) contains terms depending on the

elastic constants of both solid media, and it {s hypothesized that the
vanishing of this term describes the propagation of a Stoneley surface
wave at the interface of the two solid media. It seems likely that the
expression (5463 - E3e4) should reduce to the equation obtained by

Stoneley®’1° to describe the propagation of a surface wave at the inter-
face of two solid media.

s
If (5463 - 5384) is multiplied by - kq-6p 2 and the resulting
expression is simplified, it is found that

6 52
-k'ec! = -
k'c'p (H483

2334) =
s, 2 s, 2 S. s sS. 8
c'l'[(p 2) C'Za'b' + (p 1) c'zg'k' +p 1p zc'za'k' +p 1,2 '2b'g'

s, 2 s

s s, 2
+(92) -Zplpz+(pl):\

s, 2 s, 2

2 S S
+ c! [4p 1p 2b2c'2a'b' - 4(p 2) kzc'za'b' - 4(p 1) bzc'zg'k'

S, S s. s s, 8 s, 2 s, 2 .-
+ 4p lp 2k2c'2g'k' + 4p lp zk2 + 4p 1p 2b2 - 4(p 1) b2 - 4(p 2) kZJ

+ [c'4a'b'g'k'(4(psl)2b“ -8y Ly 222 4 4(p52)2k“> + 4(p51)2c'2b‘*a'b'
-8pslpszb2c'2k2a'b' + 4(psz)2 kac'za'b' + 4(p52)2 kac'zg'k'
+ 4(p51).b4c'2g'k' 8o Yo 2 222 4 4(p52)2k4
. 4(p51)2b4 i Sps'1pszk2b2]’
where c' = i . (33)
Now, let
a' =:rci—. AL, b =~ci,31, g' _ziTAz, and k' =tc%-32 X
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Then

s s, 2 s 8 s S

S, — _ b i 2 1 2 1 2.1

-k,c.ép 2(5,¢, T Ege,) =cf [(p =0 ) - (p Ay +p "A) (o By +p "B |
2 %1 %2 Sv, S 2 -
+ 2Ke' [ AB. - - ! [ - .
¢ 1P A8, - AlBl p 4+ op K rAlBl 1) (AZBZ 1)J R
s s
2 2.1

where K = 2(p 'b” - p k") . (34)

This is exactly the equation describing the Stoneley wave that was
obtained by Stoneley in his original solid-solid problem,”?

Scholte® has investigated Equation (34) in an attempt to determine
the conditions under which Stoneley waves can exist at a solid-solid
interface. He found that they can exist at the interface only under a
set of extremely stringent conditions. The results of Scholte's investi-
gation are presented in Figures 3 and 4. Stoneley waves can exist only
in the shaded regions. by and Xi are the Lame constants of the solids.

These conditions are in fact so stringent that it is difficult to con-
ceive of a model that can satisfy them. It is necessary to consider a
radical model like plexiglas over lead in order to formulate a system
that will contain Stoneley arrivals that originate at a solid-solid
interface. When such a model is considered experimentally, the Stoneley
velocity is so slow that multiple reflections occurring at the boundaries
of the experimental system makes the identification of a "Stoneley-type"
wave impossible. Certainly, a model such as plexiglas over lead, where
the densities differ by a factor of ten, should not be found in nature.

EXPERIMENTAL RESULTS

The apparatus used in the experimental phase of this project was
quite similar to that utilized in previous work with the homogeneous
bottom. A brief description of the instrumentation and model facility
can be found in Appendix C of this paper. The major experimental problem
encountered in the layered bottom extension was a question concerning
the bonding of the solid layers, As described in Appendix C, it was
found that for our very smooth and flat surfaces the bonding of the
layers was not important. The two models used in the experimental phase
of the project were water - plexiglas - plaster and water - glass ~
aluminum. The elastic and physical parameters of these materials are
given in Table 1.

(Text Continued on Page 29)
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TABLE 1

ELASTIC PARAMETERS IN THE MODEL

Compressional Velocity Shear Velocity Density Thickness

Material (cm/sec) {(cm/sec) (gm/cm3) (cm)

Water 1.46 x 10° - 1.00 = (20.0)

Plexiglas 2.62 x 10° 1.30 x 10° 1.17 3.81

Plaster 2.83 x 10° 1.80 x 10° 1.89 ® (24.0)
. 5 5

Glass 3.30 x 10 1.56 x 10 3.50 1.27

Aluminum 5.26 x 10° 2.95 x 10° 2.70 ® (20.9)

Figures 5 and 6 are typical pressure response versus time curves
obtained for the two models., The amplitudes are relative and travel
times are accurate to * 1.0 microsecond. The noted wave identifications
will be discussed in the next section.

EXPERIMENTAL - THEORETICAL COMPARISON AND DISCUSSION

The large number of elastic wave arrivals occurring in a short time
period in this problem prohibit all of the theoretical arrivals to be
identified from any one experimental photograph. In an attempt to ex-
perimentally identify as many of the arrivals as possible, two widely
varying models were chosen: water-plexiglas-plaster, and water-glass-
aluminum. Primary attention will be directed toward the water-plexiglas-
plaster model, although several aspects of the results obtained from
the water-glass-aluminum model will be discussed. Because of the
limiting assumption that all arrivals experiencing two or more reflections
from the solid-solid interface may be neglected, it should not be expected
that all experimental arrivals will be predicted theoretically.

(Text Continued on Page 37)
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WATER - PLEXIGLAS - PLASTER MODEL

Table 2 contains the computed theoretical travel times in the water-
plexiglas-plaster model when H = 0.05 centimeters, and z = 0.0 centi-
meters, These theoretical arrival times have been included in Figure 5
so that they might easily be compared with the experimental results.

It has been shown previously® that a Rayleigh wave or a critically
refracted shear wave cannot be propagated when the shear velocity of the
solid at the fluid-solid interface is less than the compressional sound
velocity of the fluid. Hence, since such a relationship between elastic

constants is present in the water - plexiglas - plaster model, the PISZPI

and Rayleigh arrivals do not exist, It can be shown in a manner similar

to that utilized above that the P1P253P2P1, P1P2835251, and P1$2P2RP282P1

arrivals may not exist in this model. Also, when the elastic parameters
of the two solids are analyzed with respect to Scholte's criteria for the
existence of surface waves at a solid-solid interface (Figures 3 and 4),
it can be seen that such an arrival is not possible for this model.

Referring to Figure 5a, it can be seen that for this range of
10 centimeters, the first arrival (38 microseconds) appears to be the

P1P2P1 wave, the next arrival (45 microseconds) is the P1P2P3P2P1

arrival, and the third arrival (49 microseconds) appears to be the
PIPZRP2P1 arrival. Two small peaks appear at 58 and 72 microseconds

which have not been identified. At 69 microseconds there is a relatively

strong arrival which appears to be a superposition of the P1P2R52P1’

P152P3P2P1, direct, and PIRP1 arrivals, Following the direct arrival

there is a region of small oscillations which was also noted in the fluid-
homogeneous solid problem. This oscillation is again related to the fact
that we have an explosive type point source instead of a delta-excited
line source as the theory assumed. The direct pulse is about 4 micro-
seconds long and the reflected (PIRPI) pulse occurs soon after the
beginning of the direct pulse. The PlRP1 arrival experiences a large
phase change when it is reflected at this range, so strong interference
should be expected in this region of the pressure response curve as the
arrival times for the direct and PIRP1 arrivals are almost the same.

The arrival at 90 microseconds is due to the PlS P.S,P, and

2°372"1
PIPZSZRSZPZPI arrivals,

A very large pressure increase begins at about 97 microseconds and
reaches a peak at about 100 microseconds. Three arrivals, the P S, S,S P

1727°37271°
P152RSZP and Stoneley (Liquid-Solid) are predicted in this region.

1’

(Text Continued on Page 39)
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TABLE 2

THEORETICAL ARRIVAL TIMES FOR THE WATER - PLEXIGLAS - PLASTER
MODEL (H = 0.05 cm, z = 0.0 cm, x = Variable)

Arrival Time in Microseconds

10.0 12.0 _ 14,0 16.0 18.0
Wave Type * T cm T cm _ *T em *7 cm
t(D) 68. 82.2 95.8 109.5 123.3
t(PIRPl) 68, 82.2 95.8 109.5 123.3
t(PlePI) 38. 46.4 54.0 61.6 69.3
t(P,S,P,) - - - - -
t(P1P2P3P2P1) 46, 53.9 60.9 67.9 75.2
t(PISZS3SZP1) 96. 107.5 118.5 129.5 140.8
t(P182P3SZP1) 88. 95.5 102.5 109.6 116.8
t(P1P283P2P1) - - - - -
t(P1P2P3SZP1) 67. 74,7 81.7 88.8 96.0
t(PlPZS3SZP1) - - - - -
t(PleRPZPl) 48, 54.2 61.2 68.0 76.0
t(PISZRSZP1) 96. 109.4 122.6 135.9 149.6
t(PIPZRSZPI) 67. 74.4 81.2 88.9 96.3
t(PlPZSZRSZPZPl) 89. 97.0 104.7 112.4 120.0
t(PISZPzRPZSZPl) - - - - -
t (Rayleigh) - - - - -
t (Stoneley:Liq.-Sol.) 97. 116.2 136.0 155.5 174.5

t(Stoneley:Sol.-Sol.)
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Pressure response curves obtained at larger ranges will show that this
large peak is primarily due to a Stoneley (Liquid-Solid) arrival,

Many of the arrivals occurring after the Stoneley peak are due to re-

flections disallowed in the theoretical derivation. It will be shown

that the large arrival at about 142 microseconds is also a Stoneley
(Liquid-Solid) arrival,

The first three arrivals in Figure 5b (range = 12 centimeters)
. P {val
again appear to be the P1 2P1, P1P2P3P2P1, and PlPZRP2P1 arrivals,

occurring at 47, 52, and 56 microseconds respectively. The two small
arrivals at 63 and 68 microseconds have not been identified. The peak

3 Iy 2 3 "p
at 75 microseconds is a superposition of the P1P2R82P1 and P1P2P352_1

arrivals. The direct and reflected (PlRPl) arrivals occur at about

82 microseconds, followed by the usual region of oscillations, scme cf
which are relatively large in this pressure response curve, The

. . 7 secon
P1P282R32P2P1 and P182P332P1 arrivals are predicted at 97 microseconds,

but appear to be somewhat distorted, The arrival at 102 microseconds
is unexplained, The large arrival with a peak at 108 microsecoads is

predicted to be the P18283SZP1 arrival. A weak arrival, possibly the

PISZRSZPI occurs at 112 microseconds, It must be noted that many of

the reflected arrivals have probably experienced phase changes greater
than 90 degrees; and hence, these arrivals may be negative rather than
positive peaks. The large Stoneley (Liquid-Solid) arrival begins at
114 microseconds and reaches a peak at 117 microseconds. The strong
arrival at about 156 microseconds will be identified as a Stoneley
(Liquid-Solid) arrival later.

Referring to Figure 5c, it is now seen that the two small arrivals
at 63 and 68 microsecands are unidentified. Also, two moderate arrivals
at 127 and 130 microseconds are unidentified, Of course, the two pre-
dominant waveforms are the Stoneley arrival at 135 microsecoads and
the other large arrival at 175 microseconds which will be discussed
shortly.

Figures 5d and 5e show that the Stoneley arrival continues to be
the predominant waveform, although the P1828352P1 arrival is beginning

to show a rather large amplitude., Several arrivals ccatinue to be
unidentified,

Figure 7 shows the travel time versus range curves fcr the Stoneley
(Liquid-Solid) arrival and for the large unidentified arrival that
usually occurs about 40 microseconds after the Stoneley arrival. The
inverse slopes of these curves represent the velocity with which the
waves are traveling, The theoretical Stoneley velocity is 1.03 x 10
centimeters per seconds, while the experimental velocity is

(Text Continued on Page 41)
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1,09 x 105 centimeters per second, The large unidentified arrival that
is suspected to be a Stoneley arrival has a velocity of 1,11 x 10°
centimeters per second. Since this velocity is considerably less than
the sound velocity in either of the solids, it is strongly indicated

that this arrival must be identified as a Stoneley arrival. But, the
Stoneley wave is propagated only along the interface (i.e., horizontally)
80 this latter arrival cannot represent a reflection of the Stoneley wave.
The possibility remains that a compressional wave in the fluid could be
refracted as it enters the upper solid, reflected at the solid-solid
interface, and then strike the fluid-solid interface at such an angle so
that it would force the formation of a Stoneley-type arrival. But, if
this is the situation, geometrical considerations show that such an ar-
rival could not occur in this model unless the range was greater than

15 centimeters, Thus, the exact reason for the existence of the latter
"Stoneley-1like" arrival is unknown. It is apparent that further research
related to the rather strange physical mechanisms by which surface waves
are formed and propagated will be necessary to solve this problem.

WATER - GLASS - ALUMINUM MODEL

The theoretical travel times in the water - glass - aluminum model
when H = 0.5 centimeters and z = 0.0 centimeters are given in Table 3,
As before, these theoretical times have been included in Figure 6 so
that they might easily be compared with the experimental results.,

The first arrival in Figure 6a appears to be due to both the
PlePland P1P2P3P2Piarr1vals. The next two arrivals are due to the
P1P2P3SZP1 and P1P2R82P1 waves, At about 35 microseconds, the direct

. . P .
arrival occurs, supported by the ‘ISZPZRP282P1’ Rayleigh, and P152P1

arrivals. The reflected (PIRPI) arrival does not now interfere with the

direct arrival as much, as there is almost a 1 microsecond difference in
arrival times. The peak occurring at about 41 microseconds is the
Stoneley (Liquid-Solid) arrival. No Stoneley (Solid-Solid) arrival

can exist in this model. In addition, several of the reflecticn aad
refraction arrivals cannot occur, as can be seen in Table 3.

Referring to Figure 6b, the first arrival (26 microseconds) is now

the P1P2P3P2P1 arrival. That is, the arrival that is critically re-

fracted at the solid-solid interface has a shorter travel time than
the arrival that is critically refracted at the fluid-solid interface.
The arrival at 30 microseconds is evidently due to a superposition of

the PlePland P1P2RP2P1 arrivals., The P1P2P382P1 arrival is predicted

to occur 31.6 microseconds, but no such arrival is present., The con-

tribution at about t = 36 microseconds is due to the P1P2RSZP1and

(Text Continued on Page 43}
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TABLE

3

THEORETICAL ARRIVAL TIMES FOR THE WATER - GLASS - ALUMINUM

MODEL (H = 0.5 ¢m, z = 0.0 cm, x = Variable)

Arrival Time in Microseconds

Wave Type x =5,0 cm x = 7.5 cm
t(D) 34,2 51.3
t(PIRPl) 35.0 52.3
t(PlePl) 21.3 28.9
t(P182P1) 34.4 50.4
t(P1P2P3P2P1) 22,1 26.9
t(PlsZS3SZP1) - -
t(P152P3SZP1) 31.6 36.4
t(P1P253P2P1) - -
t(P1P2P3SZP1) 26.8 31.6
t(PlPZS3SZP1) - -
t(PlPZRPzPl) 23.3 30.3
t(PISZRSZPI) 40.0 54.0
t(P1P2R52P1) 29.1 36.5
t(PlPZSZRSZPZPl) - -
t(PlsZPZRPZSZPl) 35.7 43,2
t(Rayleigh) 35.0 52.4
t(Stoneley:Liq.~So0l.) 40,0 60.0

t(Stoneley:Sol,~Sol.)

42~



PISZPBSzflarrlvals. The rlsszRFZSZPl arrival occurs at 42,5 micro-

seconds, although it is quite weak, Also, a small disturbance at about

40 microseconds is believed to be the PlsZPl arrival, Again, several

arrivals support the direct pulse at about 51 microseconds, The Stoneley
zero crossing is at 58,8 microseconds, while the Stoneley peak occurs
at about 60 microseconds.

CONCLUSIONS

The most important conclusions that can be stated at this time are:

1. The theoretical approach utilized appears to be quite ap-
plicable to problems cof the type considered here, Arrival time pre-
dictions can be obtained with little effort, and exact amplitude data
should be available when the mathematical development can be completed,

2, The extended theory developed in this report is accurate in
predicting most expected arrivals at short ranges in the experimental
model, although several experimental arrivals are received that are not
predicted. Further development of the theory, which will give waveform
data, should prove useful in determining the origin of these unexpected
arrivals,

3. Except for rare situations, Stoneley waves cannot exist at
real solid-solid interfaces, It must be emphasized that such waves are
theoretically possible under certain conditions, but that these con-
ditions are soc stringent that they can be rarely satisfied.

4, An additi.onal Stoneley-type wave appears to exist at the fluid-
solid interface because of a reflection from the solid-solid interface,
although this cannot be substantiated by a geometrical analysis.

5. The work performed on this phase of the project continues to
illustrate the large errors in wave propagation predictions near an
interface that can occur when a hard bottom is theoretically considered
to be a fluid.

6. Although this paper has considered only a fluid-two layer-
solid mcdel, the results are useful when considering other models. The
principal contribution to the pressure response waveform obtained in
the fluid near a hard bottom will often be the Stoneley wave propagated
at the fluid-solid interface, although several such waves may be present
if the bottom contains a number of layers,
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DIRECTION OF FUTURE WORK

It is apparent that much research remains to be done in the field
of elastic wave propagation near an interface. Many questions remain
unanswered, as has been noted throughout this report. Certainly, it
seems that surface waves must be responsible for a major part of the
pressure response when one considers the propagation of low-frequency
sound near a hard ocean floor, and hence a thorough understanding of
such wave propagation is important.

The problem of elastic wave prcpagation has been under investi-
gation since before the turn of the century, and research in this field
will certainly continue well into the future. Because of the complexity
of the mathematics involved in the rigorous solution of any elastic
wave propagation problem, many limiting assumptions are almost always
necessary, Often it is necessary to accept assumptions that make ex-
perimental verification of theoretical results difficult, if not im-
possible, For this reason, the efforts expended in this field at this
Laboratory have been planned so that experimental and theoretical de-
velopments go sideby-side. Models are chosen so the theoretical
assumptions necessary to solve a specific problem may be experimentally
duplicated.

Future endeavors on this project should include:

1. A completion of the mathematical development presented in this
report--This will consist of performing the transformation from the
variable q to real time, and then programming the results through use
of a computer so that pressure response versus time curves can be
easily obtained for any system to be considered.

2, Inclusion of the contributions due to reflections from the
water-air interface--This will be a mathematical and experimental
development quite similar to that presented in this report.

3. Comparison of theoretical and model work with data obtained
over a soft bottom for an explosive type sound source--This data is now
available and preliminary analysis should begin in the near future.
Although most of the model work has been done with rigid materials, it
must be stressed that the theory is also applicable to softer bottom
materials, Figure 8a, b and ¢ contains pressure response curves for
systems consisting of (a) recent sediments, (b) consolidated sediments,
and (c) metamorphic rock. It can be seen that Stoneley wave contri-
butions are substantial even for the recent sediment bottom, Since the
Stoneley wave is symmetrical, most of the response following the direct
arrival can be attributed to it, Hence, an analysis of the available
data should show surface wave contributions.

(Text Continued on Page 48)
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4, Extension of the theory to repetitive impulsive sources--This
would consist of both theoretical and model work.

5. Consideration of a harmonic type source--If possible, a "point"
harmonic type sound source should be obtained and model work done using
this source. The theory considered to data should be useful with suitable
modification, and an experimental endeavor will prove useful.

6. Investigation of the scale laws governing the various types
of waves present in the model work--This would include determination of

amplitude decay rates and frequency content changes with varying dimensional
parameters.



APPENDIX A
DERIVATION OF THE REFLECTION COEFFICIENTS A(q) AND N(q)
Equations (1) and (2) define the 11 displacement potentials con-

sidered in this problem. These potentials are subject to the following
boundary conditions (See Figure 2):

1. The normal stresses (gzz) are continuous at z H and z H+ J.

i
]

2. The normal displacements (w) are continuous z = H and z = H + J.
3. The tangential stresses (oxz) are zero at z = H and continuous

at z = H + J,
4, The tangential displacements (u) are continuous at z = H + J.

These boundary conditions give 10 boundary equations which can be
used to solve for the 10 quantities A, B, C, D, E, F, G, I, M and N.
Hence, instead of the 3 equations and 3 unknowns in the fluid-single
solid problem, we now have 10 equations and 10 unknowns. If we had not
limited the problem to a maximum of two reflections from the solid-solid
interface, even more potentials, and hence unknowns, would have been
present.

Since the present problem concerns the response in the fluid, it is
only necessary to determine A(q) and N(q).

The displacements and stresses are given byl:

2 .2 s 2 s 2.8 -
o, %= o2 L un? &% 2L
2z a At dz dx3z
s (224’ 2 3205 3%
ze =0 2 + 2b ( = 2 )
At 0xdz ox
£ £
a =p 50
zz 3t
o £f-0
Xz
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s _agd ot agt
w = - , W=
dz ox dz
NCIE- -
ox 3z

Applying the boundary conditions and inserting the displacement
potentials (2a - j) into the boundary equations, we obtain:

- - 1y 3 8 —iwh 'H1
A[pfe 1er] _ B[e iwa Hp 1o - szqz)] + C[Zp 1bqu,e iwb HJ

= -p fe-iwI'H (a-1)

A[Fe imFH] + B[a.e iwa H] - C[qe twb H] = [ lwrH (A-2)
- [ - '

B[sza'qe lwa H] + C[(l - 2b2q2)e Lwb H] =0 (A-3)

8 - ' s - ' .
o 11 - 26Pqhyetea (B4 J)] - q2p llbrqe I Y ]
L] _ ' - s 2 ) '
+ ]{p L1 - plghyeriea B+ J)_l + E[Zp lp?pr e iub (B + J)]

8 - ' r 8 - '
+ I[zp zkzqk,e itwk'(H + Jﬂ _ ML’ 2(1 _ 2kzqz)e iwg' (H + J)] =0 (A-4)

B[Zp 1bza.qe iwa'(H + Jl + C[p 1(1 i} szqz)e iwb'(H + J)]
s -iwa' s 2 2, -iwb'(H +
. 1{29 1p2,1qe iva’ (H + J)] + E[p 11 - 2p2qlyeiuwb' (M J)}

8 - 1ok’ o522, qwg'(H 4+ J
_ I[p 2(1 _ 2k2q2)e iwk'(H + Jﬂ - M[Zp k%g" qe iwg' (H )] =0 (A-5)
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- B[qe-iwa'(a + J)] _ C[b,e-iwb'(H + J)] . D[qe-iwa'(l{ + 17

J

+ E[b,e-imb'(!{ + J)] + I[k,e-iu)k'(}l + JSJ + M[qe-iwg'(l{ + J)] =0 (A-6)

_ B{;a,e-iwa'(ﬂ + J):] + C[qe-iwb'(ﬂ +J)" r e-iwa'(H + J)_\

Jr e

+ E[qe-iwbv(ﬁ + J)] + M{g.e-img'(ﬂ + J)} _ I{qe-iwk'(ﬁ + J)'J =0 (A-7)

- 81 2 2. -iwa'(H + 27)7 512 -iwb' (H + 2
[{p (1 - 2b%q))e J+ E[Zp b gb'e ( J)]

s
1 2 2, -iwa' s -iwb’ .
+ E{p (1 - 2b2q2ye i®a’ (H + 23)] _ 0[2;) 1b2qb.e iwb' (H + ZJ)J

f -iel(H + 20)7
-{p e lm( )_\x;- 0 (A-S)

r - ' - ' -
EL(I _ szqz)e iwb' (H + 2J)'J + }{sza,qe iwa'(H + 2J)J

+ G[(l _ 2bzqz)e—iu)b'(li + 2J)] _ D[sza,qe-iwa'(ﬂ + 2J)‘_\ -0 (A-9)

_ D[a.e-iwa'(ﬂ + ZJ)] R E[qe—imb'(ﬂ + 2J)] + F[a.e-iwa' (H + 2J)J
_ c[qe’imb'(ﬂ + 2J)] + r{re'm(“ + 2J)] =0 (A-10)

This set of 10 equations can be written very compactly in matrix
form:
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It is now theoretically possible to solve for each of the
10 unknown quantities by evaluating two 10 by 10 determinants. It should
be noted that these determinants immediately reduce to 7 by 7 determinants
due to the fact that A(q), B(q), and C(q) are not dependent on the other
unknown quantities, Such evaluations will yield equations (3) and (4).

(Reverse Page 54 Blank)

-53-



APPENDIX B

THE REFRACTION AND REFLECTION ARRIVALS

It has been shown’? that in an infinite fluid only a compressional
type of wave motion can occur, while in an infinite solid both com-
pressional and shear waves are possible, Considering the liquid-solid
interface illustrated in Figure Bl, it can be shown that incident com-
pressional waves from the liquid can produce compressional and shear waves
in the solid, and also that a surface wave which is tied to the interface
can occur., For certain angles of incidence for the impinging energy,
critically refracted waves can occur. Furthermore, reflections from the
interface are possible. Hence, for this fluid-solid problem, one re-
flection arrival, two refraction arrivals, one direct arrival, and surface
arrivals are predicted.

FIGURE Bl., THE LIQUID - SOLID INTERFACE

The problem under consideration in this report concerns a fluid overlying
a two-layer solid bottom. The prediction of the various reflections and
refraction arrivals now becomes much more difficult. 1In fact, as dis-
cussed previously, there are an infinite number of wave arrivals unless a
limiting condition is applied to the problem. In the mathematical
derivation section of this report the assumption was made that any waves
existing after two reflections from the lower (solid-solid) interface
could be neglected. As stated previously, this is not always a valid
assumption, but for the purpose of this investigation it is acceptable.
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Figure B2, B3, B4, and B5 show the ten refraction arrivals that must
be considered in the problem.
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FIGURE B2, THE P1P2P1, PISZPI’ P1P2P3P2P1, AND P1525352P1
REFRACTION ARRIVALS
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FIGURE B3, THE PISZP3SZP1 AND P1P283P2P1 REFRACTION ARRIVALS

(Text Continued on Page 58)
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Figures B6 and B7 illustrate the five reflection arrivals that must
be considered:
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FIGURE B6., THE PIRPI’ P1P2RP2P1, AND PISZRSZPI REFLECTION ARRIVALS
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FIGURE B7, THE PIPZRSZPI AND PISZRPZPI REFLECTION ARRIVALS
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The two arrivals that are both reflected and critically refracted are
shown in Figures B8 and B9.
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FIGURE B9. THE P182P2RP282P1 REFRACTION - REFLECTION ARRIVAL
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Also,we should expect surface or interface waves at both the liquid-
solid and solid-solid interfaces, as has been shown previously. Hence,
for the assumed liquid-two solid problem, we should expect ome direct
arrival, ten refraction arrivals, five reflection arrivals, two refraction-
reflection arrivals, and the surface arrivals from both interfaces. In
other words, there are now over twenty arrivals to analyze, rather than
the six arrivals found in the liquid-solid problem.

It has been shown previously! that the arrival times for the P1P2P1

and PISZPI refraction arrivals are given by:

2 2 3
X H-2 c
t = = 4 (1-—-) (B"].)
PleP1 a c a2
and
) %
X 2H - 2z (1 c ) (B-2)
t = = 4 - — R -
PISZPI b c b2

The derivations of the arrival times of the remaining critically

refracted arrivals are similar, so only the P1P2P3P2P1 expression will be

derived and it will be used as a guide to obtain the other arrival times,
The symbols used are defined in Figure B10.
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FIGURE B10, DEFINITION OF SYMBOLS FOR THE CALCULATION OF THE

OF THE P1P2P3P2P1 WAVE
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From Snell's law,

sin ec sin 8
- 2 €2

sin 91
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From Figure B10:
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sin 8 =

sin © =
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Therefore, the travel times in the fluid are given by

g
21 g
b =l H

1 c ¥
C(g2 - c2)
and
_<EZ = _B(H - 2)
tZ-c 2 2%
c(g - ¢

Likewise, the travel times in the upper solid are given by

§3 ) Jg

t, = —
3 a ¥
a(g2 - az)
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The travel time in the lower solid is given by

X - X, - X, -

) Y 3 _x (2H - _2z)c 2aJ
t4 = g 8 2 2.% h Z,fi 2 ¥
g(g - ¢c) g(g - a)
Therefore, the total travél time for the P _P,P_.P P  refraction arrival
12737271
is given by
t N (2H - z) ( 2 _ 2)% + 2J ( 2 aZ)AE (B-3)
P\P,P.P)P. T g cg &8 °°F ag ‘B

The travel time expressions for the other critically refracted arrivals

can be found in a manner similar to that used to find t These
P P,P.P,P,
travel times are given by:
t -2, QH-2) 2 2)%+-2i(k2-b2)% (A-4)
P.S.S.S.P.  k ck ¢ bk
1°2°3°2%1
% X
2H - 2 2 2J 2 2
tp g psp =2+ EE (g? BT+ Bt ok (A-5)
1°2°3°2%1 8 g bg
5 X
ox, (M-2) 2 2 23 2 2 "
tpps.pp “kt o ok (K -c¢) +g (ki -a) (4-6)
172°372%1 .
. . _x, (M-t - D)
P P,P,S,P, P S,P.P.P, & g
% ¥
Jd,2 2 J 2.2 }
+ag(g a’) +bg(g b") (A-7)
¥
¢ . _x, Q-9 (f - h
P P,S,5,P, P1S,5,B,P,  k ke
% %
J .2 2 J 2 2
+ 2 (k a®) + 35 (k5 - b0 (A-8)

The travel time expressions for the reflection arrivals are not as

simple as the equations obtained for the refraction arrivals,

The geo-

metrical approach necessary to determine the travel times of the reflection

arrivals consists of an iterative process.

For a given x, z, H, J, ¢, a,

and b, a travel path is found that satisfies Snell's law at each boundary

and still passes through the source and detector.

Then, once this path is

known, it is possible to compute the travel time.
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It is possible to obtain an algebraic expression for the travel
times of the refraction - reflection arrivals, Figure Bll defines the
symbols that will be used in the travel time derivation for the

PIPZSZRSZPZPI arrival,

X

P Sy P ,a,b

S

p 2,g,k

FIGURE B11l, DEFINITION OF SYMBOLS FOR THE CALCULATION OF THE ARRIVAL

TIME OF THE P1P282R82P2P1 ARRIVAL
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Snell's law states that:
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From Figure Bll:
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Therefore, the travel times in the fluid are given by
S S S
1 ¢ 2 X
c(a - ¢)
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L .2 _a@ow)
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The travel times in the solid are given by

e o3 __gla
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Thus, the total travel time for the PIPZSZRSZPZPI arrival is given by

(2H - 2) % %
t =24 ZHac Z (a2 - c2) + %% (a2 - bz) (A-9

o

Likewise, it can be shown that

. 5
t _x,  (2H-2) 2 _ 2 23 2 _ A-10
1>1821>2RP2321>1 =%t - (b ) +35 (b a’) ( )
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APPENDIX C

EXPERIMENTAL TNSTRUMENTATION

The experimental apparatus employed in this project was similar to
that used by Roever and Vining in their original verification of Strick's
theory.? A detailed description of the apparatus is given in Appendix D
of Reference 1. Only a brief description of the apparatus will be in-
cluded here, along with details of the few modifications necessary in
the apparatus to investigate the stratified bottom problem.

The spark source and detection system remains unchanged from the
previous work. The spark source consisted of a coaxial spark gap to
which was applied the power from a 1 uf capacitor charged to 812 volts.
The peak current during the discharge was over 1000 amperes, and the dis~
charge lasted for about 4 microseconds. The size of the spark gap was
about 1 millimeter, so it could be considered to be a point source.

The detector was a Glennite UP-800c ultrasonic probe. This is
simply a commercial barium titanate detector designed for minimal dis-~
turbance of the sound field. The sensitivity was -153(+1)db (ref:
lv/dyne/cm?) between 10 kc and 400 kc, with good response down to 2 kc
and up to 2 mc.

The probe output led to a Tektronic 545 oscilloscope which was
triggered by a low-resistance shunt in the discharge circuit, Time
resolution was *1 microsecond, and was limited by the finite size of the
source and detector.

A plaster block (12" x 12" x 10") used in the previous work was
also employed in this problem as one of the materials used for the
lower semi-infinite solid. A large, solid aluminum cylinder was also
used for this purpose. The layer materials used were a 1.27 cm slab
of glass and a 3.81 cm slab of plexiglas. The elastic parameters of
these materials are given in Table 1.

The question of bonding at the solid interfaces had to be considered
carefully. In theoretical derivations the solid-solid interface is con-
sidered to be "welded." That is, it is assumed that the tangential
stresses and displacements are continuous, Hence, should the solid
layers be bonded together, or is it sufficient to simply place them
together? A search of the available literature showed about an equal
division between the two techniques. A simple solution to the bonding
difficulty was as follows:

First, data was obtained for the water - glass- aluminum model with
the glass simply lying on the aluminum block. x was 6.5 cm, H was 0.2 cm,
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and z was 0.0 cm, Then, the glass and aluminum were bonded with Barge
cement and the experiment was repeated. The two sets of data are com~
pared in Figure Cl. It can be seen that very little, if any, change
occurred because of the bonding of the two materials. Hence, it was
concluded that bonding was not necessary in this problem, although if

the layer surfaces were not smooth and flat the bonding would probably
have been of considerable importance.
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GLASS AND ALUMINUM LAYERS
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